| Index: lib/rusha.js |
| diff --git a/lib/rusha.js b/lib/rusha.js |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..c54a2415fcb492be56305741ffae6eed46dbcff4 |
| --- /dev/null |
| +++ b/lib/rusha.js |
| @@ -0,0 +1,418 @@ |
| +(function () { |
| + var /* |
| + * Rusha, a JavaScript implementation of the Secure Hash Algorithm, SHA-1, |
| + * as defined in FIPS PUB 180-1, tuned for high performance with large inputs. |
| + * (http://github.com/srijs/rusha) |
| + * |
| + * Inspired by Paul Johnstons implementation (http://pajhome.org.uk/crypt/md5). |
| + * |
| + * Copyright (c) 2013 Sam Rijs (http://awesam.de). |
| + * Released under the terms of the MIT license as follows: |
| + * |
| + * Permission is hereby granted, free of charge, to any person obtaining a |
| + * copy of this software and associated documentation files (the "Software"), |
| + * to deal in the Software without restriction, including without limitation |
| + * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| + * and/or sell copies of the Software, and to permit persons to whom the |
| + * Software is furnished to do so, subject to the following conditions: |
| + * |
| + * The above copyright notice and this permission notice shall be included in |
| + * all copies or substantial portions of the Software. |
| + * |
| + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| + * IN THE SOFTWARE. |
| + */ |
| + util = { |
| + getDataType: function (data) { |
| + if (typeof data === 'string') { |
| + return 'string'; |
| + } |
| + if (data instanceof Array) { |
| + return 'array'; |
| + } |
| + if (typeof global !== 'undefined' && global.Buffer && global.Buffer.isBuffer(data)) { |
| + return 'buffer'; |
| + } |
| + if (data instanceof ArrayBuffer) { |
| + return 'arraybuffer'; |
| + } |
| + if (data.buffer instanceof ArrayBuffer) { |
| + return 'view'; |
| + } |
| + if (data instanceof Blob) { |
| + return 'blob'; |
| + } |
| + throw new Error('Unsupported data type.'); |
| + } |
| + }; |
| + function Rusha(chunkSize) { |
| + 'use strict'; |
| + var // Private object structure. |
| + self$2 = { fill: 0 }; |
| + var // Calculate the length of buffer that the sha1 routine uses |
| + // including the padding. |
| + padlen = function (len) { |
| + for (len += 9; len % 64 > 0; len += 1); |
| + return len; |
| + }; |
| + var padZeroes = function (bin, len) { |
| + for (var i$2 = len >> 2; i$2 < bin.length; i$2++) |
| + bin[i$2] = 0; |
| + }; |
| + var padData = function (bin, chunkLen, msgLen) { |
| + bin[chunkLen >> 2] |= 128 << 24 - (chunkLen % 4 << 3); |
| + // To support msgLen >= 2 GiB, use a float division when computing the |
| + // high 32-bits of the big-endian message length in bits. |
| + bin[((chunkLen >> 2) + 2 & ~15) + 14] = msgLen / (1 << 29) | 0; |
| + bin[((chunkLen >> 2) + 2 & ~15) + 15] = msgLen << 3; |
| + }; |
| + var // Convert a binary string and write it to the heap. |
| + // A binary string is expected to only contain char codes < 256. |
| + convStr = function (H8, H32, start, len, off) { |
| + var str = this, i$2, om = off % 4, lm = len % 4, j = len - lm; |
| + if (j > 0) { |
| + switch (om) { |
| + case 0: |
| + H8[off + 3 | 0] = str.charCodeAt(start); |
| + case 1: |
| + H8[off + 2 | 0] = str.charCodeAt(start + 1); |
| + case 2: |
| + H8[off + 1 | 0] = str.charCodeAt(start + 2); |
| + case 3: |
| + H8[off | 0] = str.charCodeAt(start + 3); |
| + } |
| + } |
| + for (i$2 = om; i$2 < j; i$2 = i$2 + 4 | 0) { |
| + H32[off + i$2 >> 2] = str.charCodeAt(start + i$2) << 24 | str.charCodeAt(start + i$2 + 1) << 16 | str.charCodeAt(start + i$2 + 2) << 8 | str.charCodeAt(start + i$2 + 3); |
| + } |
| + switch (lm) { |
| + case 3: |
| + H8[off + j + 1 | 0] = str.charCodeAt(start + j + 2); |
| + case 2: |
| + H8[off + j + 2 | 0] = str.charCodeAt(start + j + 1); |
| + case 1: |
| + H8[off + j + 3 | 0] = str.charCodeAt(start + j); |
| + } |
| + }; |
| + var // Convert a buffer or array and write it to the heap. |
| + // The buffer or array is expected to only contain elements < 256. |
| + convBuf = function (H8, H32, start, len, off) { |
| + var buf = this, i$2, om = off % 4, lm = len % 4, j = len - lm; |
| + if (j > 0) { |
| + switch (om) { |
| + case 0: |
| + H8[off + 3 | 0] = buf[start]; |
| + case 1: |
| + H8[off + 2 | 0] = buf[start + 1]; |
| + case 2: |
| + H8[off + 1 | 0] = buf[start + 2]; |
| + case 3: |
| + H8[off | 0] = buf[start + 3]; |
| + } |
| + } |
| + for (i$2 = 4 - om; i$2 < j; i$2 = i$2 += 4 | 0) { |
| + H32[off + i$2 >> 2] = buf[start + i$2] << 24 | buf[start + i$2 + 1] << 16 | buf[start + i$2 + 2] << 8 | buf[start + i$2 + 3]; |
| + } |
| + switch (lm) { |
| + case 3: |
| + H8[off + j + 1 | 0] = buf[start + j + 2]; |
| + case 2: |
| + H8[off + j + 2 | 0] = buf[start + j + 1]; |
| + case 1: |
| + H8[off + j + 3 | 0] = buf[start + j]; |
| + } |
| + }; |
| + var convBlob = function (H8, H32, start, len, off) { |
| + var blob = this, i$2, om = off % 4, lm = len % 4, j = len - lm; |
| + var buf = new Uint8Array(reader.readAsArrayBuffer(blob.slice(start, start + len))); |
| + if (j > 0) { |
| + switch (om) { |
| + case 0: |
| + H8[off + 3 | 0] = buf[0]; |
| + case 1: |
| + H8[off + 2 | 0] = buf[1]; |
| + case 2: |
| + H8[off + 1 | 0] = buf[2]; |
| + case 3: |
| + H8[off | 0] = buf[3]; |
| + } |
| + } |
| + for (i$2 = 4 - om; i$2 < j; i$2 = i$2 += 4 | 0) { |
| + H32[off + i$2 >> 2] = buf[i$2] << 24 | buf[i$2 + 1] << 16 | buf[i$2 + 2] << 8 | buf[i$2 + 3]; |
| + } |
| + switch (lm) { |
| + case 3: |
| + H8[off + j + 1 | 0] = buf[j + 2]; |
| + case 2: |
| + H8[off + j + 2 | 0] = buf[j + 1]; |
| + case 1: |
| + H8[off + j + 3 | 0] = buf[j]; |
| + } |
| + }; |
| + var convFn = function (data) { |
| + switch (util.getDataType(data)) { |
| + case 'string': |
| + return convStr.bind(data); |
| + case 'array': |
| + return convBuf.bind(data); |
| + case 'buffer': |
| + return convBuf.bind(data); |
| + case 'arraybuffer': |
| + return convBuf.bind(new Uint8Array(data)); |
| + case 'view': |
| + return convBuf.bind(new Uint8Array(data.buffer, data.byteOffset, data.byteLength)); |
| + case 'blob': |
| + return convBlob.bind(data); |
| + } |
| + }; |
| + var slice = function (data, offset) { |
| + switch (util.getDataType(data)) { |
| + case 'string': |
| + return data.slice(offset); |
| + case 'array': |
| + return data.slice(offset); |
| + case 'buffer': |
| + return data.slice(offset); |
| + case 'arraybuffer': |
| + return data.slice(offset); |
| + case 'view': |
| + return data.buffer.slice(offset); |
| + } |
| + }; |
| + var // Precompute 00 - ff strings |
| + precomputedHex = new Array(256); |
| + for (var i = 0; i < 256; i++) { |
| + precomputedHex[i] = (i < 16 ? '0' : '') + i.toString(16); |
| + } |
| + var // Convert an ArrayBuffer into its hexadecimal string representation. |
| + hex = function (arrayBuffer) { |
| + var binarray = new Uint8Array(arrayBuffer); |
| + var res = new Array(arrayBuffer.byteLength); |
| + for (var i$2 = 0; i$2 < res.length; i$2++) { |
| + res[i$2] = precomputedHex[binarray[i$2]]; |
| + } |
| + return res.join(''); |
| + }; |
| + var ceilHeapSize = function (v) { |
| + // The asm.js spec says: |
| + // The heap object's byteLength must be either |
| + // 2^n for n in [12, 24) or 2^24 * n for n ≥ 1. |
| + // Also, byteLengths smaller than 2^16 are deprecated. |
| + var p; |
| + if (// If v is smaller than 2^16, the smallest possible solution |
| + // is 2^16. |
| + v <= 65536) |
| + return 65536; |
| + if (// If v < 2^24, we round up to 2^n, |
| + // otherwise we round up to 2^24 * n. |
| + v < 16777216) { |
| + for (p = 1; p < v; p = p << 1); |
| + } else { |
| + for (p = 16777216; p < v; p += 16777216); |
| + } |
| + return p; |
| + }; |
| + var // Initialize the internal data structures to a new capacity. |
| + init = function (size) { |
| + if (size % 64 > 0) { |
| + throw new Error('Chunk size must be a multiple of 128 bit'); |
| + } |
| + self$2.maxChunkLen = size; |
| + self$2.padMaxChunkLen = padlen(size); |
| + // The size of the heap is the sum of: |
| + // 1. The padded input message size |
| + // 2. The extended space the algorithm needs (320 byte) |
| + // 3. The 160 bit state the algoritm uses |
| + self$2.heap = new ArrayBuffer(ceilHeapSize(self$2.padMaxChunkLen + 320 + 20)); |
| + self$2.h32 = new Int32Array(self$2.heap); |
| + self$2.h8 = new Int8Array(self$2.heap); |
| + self$2.core = new Rusha._core({ |
| + Int32Array: Int32Array, |
| + DataView: DataView |
| + }, {}, self$2.heap); |
| + self$2.buffer = null; |
| + }; |
| + // Iinitializethe datastructures according |
| + // to a chunk siyze. |
| + init(chunkSize || 64 * 1024); |
| + var initState = function (heap, padMsgLen) { |
| + var io = new Int32Array(heap, padMsgLen + 320, 5); |
| + io[0] = 1732584193; |
| + io[1] = -271733879; |
| + io[2] = -1732584194; |
| + io[3] = 271733878; |
| + io[4] = -1009589776; |
| + }; |
| + var padChunk = function (chunkLen, msgLen) { |
| + var padChunkLen = padlen(chunkLen); |
| + var view = new Int32Array(self$2.heap, 0, padChunkLen >> 2); |
| + padZeroes(view, chunkLen); |
| + padData(view, chunkLen, msgLen); |
| + return padChunkLen; |
| + }; |
| + var // Write data to the heap. |
| + write = function (data, chunkOffset, chunkLen) { |
| + convFn(data)(self$2.h8, self$2.h32, chunkOffset, chunkLen, 0); |
| + }; |
| + var // Initialize and call the RushaCore, |
| + // assuming an input buffer of length len * 4. |
| + coreCall = function (data, chunkOffset, chunkLen, msgLen, finalize) { |
| + var padChunkLen = chunkLen; |
| + if (finalize) { |
| + padChunkLen = padChunk(chunkLen, msgLen); |
| + } |
| + write(data, chunkOffset, chunkLen); |
| + self$2.core.hash(padChunkLen, self$2.padMaxChunkLen); |
| + }; |
| + var getRawDigest = function (heap, padMaxChunkLen) { |
| + var io = new Int32Array(heap, padMaxChunkLen + 320, 5); |
| + var out = new Int32Array(5); |
| + var arr = new DataView(out.buffer); |
| + arr.setInt32(0, io[0], false); |
| + arr.setInt32(4, io[1], false); |
| + arr.setInt32(8, io[2], false); |
| + arr.setInt32(12, io[3], false); |
| + arr.setInt32(16, io[4], false); |
| + return out; |
| + }; |
| + var // Calculate the hash digest as an array of 5 32bit integers. |
| + rawDigest = this.rawDigest = function (str) { |
| + var msgLen = str.byteLength || str.length || str.size || 0; |
| + initState(self$2.heap, self$2.padMaxChunkLen); |
| + var chunkOffset = 0, chunkLen = self$2.maxChunkLen, last; |
| + for (chunkOffset = 0; msgLen > chunkOffset + chunkLen; chunkOffset += chunkLen) { |
| + coreCall(str, chunkOffset, chunkLen, msgLen, false); |
| + } |
| + coreCall(str, chunkOffset, msgLen - chunkOffset, msgLen, true); |
| + return getRawDigest(self$2.heap, self$2.padMaxChunkLen); |
| + }; |
| + // The digest and digestFrom* interface returns the hash digest |
| + // as a hex string. |
| + this.digest = this.digestFromString = this.digestFromBuffer = this.digestFromArrayBuffer = function (str) { |
| + return hex(rawDigest(str).buffer); |
| + }; |
| + } |
| + ; |
| + // The low-level RushCore module provides the heart of Rusha, |
| + // a high-speed sha1 implementation working on an Int32Array heap. |
| + // At first glance, the implementation seems complicated, however |
| + // with the SHA1 spec at hand, it is obvious this almost a textbook |
| + // implementation that has a few functions hand-inlined and a few loops |
| + // hand-unrolled. |
| + Rusha._core = function RushaCore(stdlib, foreign, heap) { |
| + 'use asm'; |
| + var H = new stdlib.Int32Array(heap); |
| + function hash(k, x) { |
| + // k in bytes |
| + k = k | 0; |
| + x = x | 0; |
| + var i = 0, j = 0, y0 = 0, z0 = 0, y1 = 0, z1 = 0, y2 = 0, z2 = 0, y3 = 0, z3 = 0, y4 = 0, z4 = 0, t0 = 0, t1 = 0; |
| + y0 = H[x + 320 >> 2] | 0; |
| + y1 = H[x + 324 >> 2] | 0; |
| + y2 = H[x + 328 >> 2] | 0; |
| + y3 = H[x + 332 >> 2] | 0; |
| + y4 = H[x + 336 >> 2] | 0; |
| + for (i = 0; (i | 0) < (k | 0); i = i + 64 | 0) { |
| + z0 = y0; |
| + z1 = y1; |
| + z2 = y2; |
| + z3 = y3; |
| + z4 = y4; |
| + for (j = 0; (j | 0) < 64; j = j + 4 | 0) { |
| + t1 = H[i + j >> 2] | 0; |
| + t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | ~y1 & y3) | 0) + ((t1 + y4 | 0) + 1518500249 | 0) | 0; |
| + y4 = y3; |
| + y3 = y2; |
| + y2 = y1 << 30 | y1 >>> 2; |
| + y1 = y0; |
| + y0 = t0; |
| + H[k + j >> 2] = t1; |
| + } |
| + for (j = k + 64 | 0; (j | 0) < (k + 80 | 0); j = j + 4 | 0) { |
| + t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31; |
| + t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | ~y1 & y3) | 0) + ((t1 + y4 | 0) + 1518500249 | 0) | 0; |
| + y4 = y3; |
| + y3 = y2; |
| + y2 = y1 << 30 | y1 >>> 2; |
| + y1 = y0; |
| + y0 = t0; |
| + H[j >> 2] = t1; |
| + } |
| + for (j = k + 80 | 0; (j | 0) < (k + 160 | 0); j = j + 4 | 0) { |
| + t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31; |
| + t0 = ((y0 << 5 | y0 >>> 27) + (y1 ^ y2 ^ y3) | 0) + ((t1 + y4 | 0) + 1859775393 | 0) | 0; |
| + y4 = y3; |
| + y3 = y2; |
| + y2 = y1 << 30 | y1 >>> 2; |
| + y1 = y0; |
| + y0 = t0; |
| + H[j >> 2] = t1; |
| + } |
| + for (j = k + 160 | 0; (j | 0) < (k + 240 | 0); j = j + 4 | 0) { |
| + t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31; |
| + t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | y1 & y3 | y2 & y3) | 0) + ((t1 + y4 | 0) - 1894007588 | 0) | 0; |
| + y4 = y3; |
| + y3 = y2; |
| + y2 = y1 << 30 | y1 >>> 2; |
| + y1 = y0; |
| + y0 = t0; |
| + H[j >> 2] = t1; |
| + } |
| + for (j = k + 240 | 0; (j | 0) < (k + 320 | 0); j = j + 4 | 0) { |
| + t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31; |
| + t0 = ((y0 << 5 | y0 >>> 27) + (y1 ^ y2 ^ y3) | 0) + ((t1 + y4 | 0) - 899497514 | 0) | 0; |
| + y4 = y3; |
| + y3 = y2; |
| + y2 = y1 << 30 | y1 >>> 2; |
| + y1 = y0; |
| + y0 = t0; |
| + H[j >> 2] = t1; |
| + } |
| + y0 = y0 + z0 | 0; |
| + y1 = y1 + z1 | 0; |
| + y2 = y2 + z2 | 0; |
| + y3 = y3 + z3 | 0; |
| + y4 = y4 + z4 | 0; |
| + } |
| + H[x + 320 >> 2] = y0; |
| + H[x + 324 >> 2] = y1; |
| + H[x + 328 >> 2] = y2; |
| + H[x + 332 >> 2] = y3; |
| + H[x + 336 >> 2] = y4; |
| + } |
| + return { hash: hash }; |
| + }; |
| + exports = Rusha; |
| + if (// If we'e running in Node.JS, export a module. |
| + typeof module !== 'undefined') { |
| + module.exports = Rusha; |
| + } else {// If we're running in Adblock Plus, export a module. |
| + exports = Rusha; |
| + } |
| + if (// If we're running in a webworker, accept |
| + // messages containing a jobid and a buffer |
| + // or blob object, and return the hash result. |
| + typeof FileReaderSync !== 'undefined') { |
| + var reader = new FileReaderSync(), hasher = new Rusha(4 * 1024 * 1024); |
| + self.onmessage = function onMessage(event) { |
| + var hash, data = event.data.data; |
| + try { |
| + hash = hasher.digest(data); |
| + self.postMessage({ |
| + id: event.data.id, |
| + hash: hash |
| + }); |
| + } catch (e) { |
| + self.postMessage({ |
| + id: event.data.id, |
| + error: e.name |
| + }); |
| + } |
| + }; |
| + } |
| +}()); |