OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (c) 2003-2005 Tom Wu | |
3 * All Rights Reserved. | |
4 * | |
5 * Permission is hereby granted, free of charge, to any person obtaining | |
6 * a copy of this software and associated documentation files (the | |
7 * "Software"), to deal in the Software without restriction, including | |
8 * without limitation the rights to use, copy, modify, merge, publish, | |
9 * distribute, sublicense, and/or sell copies of the Software, and to | |
10 * permit persons to whom the Software is furnished to do so, subject to | |
11 * the following conditions: | |
12 * | |
13 * The above copyright notice and this permission notice shall be | |
14 * included in all copies or substantial portions of the Software. | |
15 * | |
16 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
17 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
18 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
19 * | |
20 * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, | |
21 * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER | |
22 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF | |
23 * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT | |
24 * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |
25 * | |
26 * In addition, the following condition applies: | |
27 * | |
28 * All redistributions must retain an intact copy of this copyright notice | |
29 * and disclaimer. | |
30 */ | |
31 | |
32 // Basic JavaScript BN library - subset useful for RSA encryption. | |
33 | |
34 // Bits per digit | |
35 var dbits; | |
36 | |
37 // JavaScript engine analysis | |
38 var canary = 0xdeadbeefcafe; | |
39 var j_lm = ((canary&0xffffff)==0xefcafe); | |
40 | |
41 // (public) Constructor | |
42 function BigInteger(a,b,c) { | |
43 if(a != null) | |
44 if("number" == typeof a) this.fromNumber(a,b,c); | |
45 else if(b == null && "string" != typeof a) this.fromString(a,256); | |
46 else this.fromString(a,b); | |
47 } | |
48 | |
49 // return new, unset BigInteger | |
50 function nbi() { return new BigInteger(null); } | |
51 | |
52 // am: Compute w_j += (x*this_i), propagate carries, | |
53 // c is initial carry, returns final carry. | |
54 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue | |
55 // We need to select the fastest one that works in this environment. | |
56 | |
57 // am1: use a single mult and divide to get the high bits, | |
58 // max digit bits should be 26 because | |
59 // max internal value = 2*dvalue^2-2*dvalue (< 2^53) | |
60 function am1(i,x,w,j,c,n) { | |
61 while(--n >= 0) { | |
62 var v = x*this[i++]+w[j]+c; | |
63 c = Math.floor(v/0x4000000); | |
64 w[j++] = v&0x3ffffff; | |
65 } | |
66 return c; | |
67 } | |
68 // am2 avoids a big mult-and-extract completely. | |
69 // Max digit bits should be <= 30 because we do bitwise ops | |
70 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) | |
71 function am2(i,x,w,j,c,n) { | |
72 var xl = x&0x7fff, xh = x>>15; | |
73 while(--n >= 0) { | |
74 var l = this[i]&0x7fff; | |
75 var h = this[i++]>>15; | |
76 var m = xh*l+h*xl; | |
77 l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); | |
78 c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); | |
79 w[j++] = l&0x3fffffff; | |
80 } | |
81 return c; | |
82 } | |
83 // Alternately, set max digit bits to 28 since some | |
84 // browsers slow down when dealing with 32-bit numbers. | |
85 function am3(i,x,w,j,c,n) { | |
86 var xl = x&0x3fff, xh = x>>14; | |
87 while(--n >= 0) { | |
88 var l = this[i]&0x3fff; | |
89 var h = this[i++]>>14; | |
90 var m = xh*l+h*xl; | |
91 l = xl*l+((m&0x3fff)<<14)+w[j]+c; | |
92 c = (l>>28)+(m>>14)+xh*h; | |
93 w[j++] = l&0xfffffff; | |
94 } | |
95 return c; | |
96 } | |
97 if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { | |
98 BigInteger.prototype.am = am2; | |
99 dbits = 30; | |
100 } | |
101 else if(j_lm && (navigator.appName != "Netscape")) { | |
102 BigInteger.prototype.am = am1; | |
103 dbits = 26; | |
104 } | |
105 else { // Mozilla/Netscape seems to prefer am3 | |
106 BigInteger.prototype.am = am3; | |
107 dbits = 28; | |
108 } | |
109 | |
110 BigInteger.prototype.DB = dbits; | |
111 BigInteger.prototype.DM = ((1<<dbits)-1); | |
112 BigInteger.prototype.DV = (1<<dbits); | |
113 | |
114 var BI_FP = 52; | |
115 BigInteger.prototype.FV = Math.pow(2,BI_FP); | |
116 BigInteger.prototype.F1 = BI_FP-dbits; | |
117 BigInteger.prototype.F2 = 2*dbits-BI_FP; | |
118 | |
119 // Digit conversions | |
120 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; | |
121 var BI_RC = new Array(); | |
122 var rr,vv; | |
123 rr = "0".charCodeAt(0); | |
124 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; | |
125 rr = "a".charCodeAt(0); | |
126 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | |
127 rr = "A".charCodeAt(0); | |
128 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; | |
129 | |
130 function int2char(n) { return BI_RM.charAt(n); } | |
131 function intAt(s,i) { | |
132 var c = BI_RC[s.charCodeAt(i)]; | |
133 return (c==null)?-1:c; | |
134 } | |
135 | |
136 // (protected) copy this to r | |
137 function bnpCopyTo(r) { | |
138 for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; | |
139 r.t = this.t; | |
140 r.s = this.s; | |
141 } | |
142 | |
143 // (protected) set from integer value x, -DV <= x < DV | |
144 function bnpFromInt(x) { | |
145 this.t = 1; | |
146 this.s = (x<0)?-1:0; | |
147 if(x > 0) this[0] = x; | |
148 else if(x < -1) this[0] = x+DV; | |
149 else this.t = 0; | |
150 } | |
151 | |
152 // return bigint initialized to value | |
153 function nbv(i) { var r = nbi(); r.fromInt(i); return r; } | |
154 | |
155 // (protected) set from string and radix | |
156 function bnpFromString(s,b) { | |
157 var k; | |
158 if(b == 16) k = 4; | |
159 else if(b == 8) k = 3; | |
160 else if(b == 256) k = 8; // byte array | |
161 else if(b == 2) k = 1; | |
162 else if(b == 32) k = 5; | |
163 else if(b == 4) k = 2; | |
164 else { this.fromRadix(s,b); return; } | |
165 this.t = 0; | |
166 this.s = 0; | |
167 var i = s.length, mi = false, sh = 0; | |
168 while(--i >= 0) { | |
169 var x = (k==8)?s.charCodeAt(i)&0xff:intAt(s,i); /** MODIFIED **/ | |
170 if(x < 0) { | |
171 if(s.charAt(i) == "-") mi = true; | |
172 continue; | |
173 } | |
174 mi = false; | |
175 if(sh == 0) | |
176 this[this.t++] = x; | |
177 else if(sh+k > this.DB) { | |
178 this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; | |
179 this[this.t++] = (x>>(this.DB-sh)); | |
180 } | |
181 else | |
182 this[this.t-1] |= x<<sh; | |
183 sh += k; | |
184 if(sh >= this.DB) sh -= this.DB; | |
185 } | |
186 if(k == 8 && (s[0]&0x80) != 0) { | |
187 this.s = -1; | |
188 if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; | |
189 } | |
190 this.clamp(); | |
191 if(mi) BigInteger.ZERO.subTo(this,this); | |
192 } | |
193 | |
194 // (protected) clamp off excess high words | |
195 function bnpClamp() { | |
196 var c = this.s&this.DM; | |
197 while(this.t > 0 && this[this.t-1] == c) --this.t; | |
198 } | |
199 | |
200 // (public) return string representation in given radix | |
201 function bnToString(b) { | |
202 if(this.s < 0) return "-"+this.negate().toString(b); | |
203 var k; | |
204 if(b == 16) k = 4; | |
205 else if(b == 8) k = 3; | |
206 else if(b == 256) k = 8; // byte array /** MODIFIED **/ | |
207 else if(b == 2) k = 1; | |
208 else if(b == 32) k = 5; | |
209 else if(b == 4) k = 2; | |
210 else return this.toRadix(b); | |
211 var km = (1<<k)-1, d, m = false, r = "", i = this.t; | |
212 var p = this.DB-(i*this.DB)%k; | |
213 if(i-- > 0) { | |
214 if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = (k==8)?String.fromCh
arCode(d):int2char(d); } /** MODIFIED **/ | |
215 while(i >= 0) { | |
216 if(p < k) { | |
217 d = (this[i]&((1<<p)-1))<<(k-p); | |
218 d |= this[--i]>>(p+=this.DB-k); | |
219 } | |
220 else { | |
221 d = (this[i]>>(p-=k))&km; | |
222 if(p <= 0) { p += this.DB; --i; } | |
223 } | |
224 if(d > 0) m = true; | |
225 if(m) r += (k==8)?String.fromCharCode(d):int2char(d); /** MODIFIED **/ | |
226 } | |
227 } | |
228 return m?r:"0"; | |
229 } | |
230 | |
231 // (public) -this | |
232 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } | |
233 | |
234 // (public) |this| | |
235 function bnAbs() { return (this.s<0)?this.negate():this; } | |
236 | |
237 // (public) return + if this > a, - if this < a, 0 if equal | |
238 function bnCompareTo(a) { | |
239 var r = this.s-a.s; | |
240 if(r != 0) return r; | |
241 var i = this.t; | |
242 r = i-a.t; | |
243 if(r != 0) return r; | |
244 while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; | |
245 return 0; | |
246 } | |
247 | |
248 // returns bit length of the integer x | |
249 function nbits(x) { | |
250 var r = 1, t; | |
251 if((t=x>>>16) != 0) { x = t; r += 16; } | |
252 if((t=x>>8) != 0) { x = t; r += 8; } | |
253 if((t=x>>4) != 0) { x = t; r += 4; } | |
254 if((t=x>>2) != 0) { x = t; r += 2; } | |
255 if((t=x>>1) != 0) { x = t; r += 1; } | |
256 return r; | |
257 } | |
258 | |
259 // (public) return the number of bits in "this" | |
260 function bnBitLength() { | |
261 if(this.t <= 0) return 0; | |
262 return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); | |
263 } | |
264 | |
265 // (protected) r = this << n*DB | |
266 function bnpDLShiftTo(n,r) { | |
267 var i; | |
268 for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; | |
269 for(i = n-1; i >= 0; --i) r[i] = 0; | |
270 r.t = this.t+n; | |
271 r.s = this.s; | |
272 } | |
273 | |
274 // (protected) r = this >> n*DB | |
275 function bnpDRShiftTo(n,r) { | |
276 for(var i = n; i < this.t; ++i) r[i-n] = this[i]; | |
277 r.t = Math.max(this.t-n,0); | |
278 r.s = this.s; | |
279 } | |
280 | |
281 // (protected) r = this << n | |
282 function bnpLShiftTo(n,r) { | |
283 var bs = n%this.DB; | |
284 var cbs = this.DB-bs; | |
285 var bm = (1<<cbs)-1; | |
286 var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; | |
287 for(i = this.t-1; i >= 0; --i) { | |
288 r[i+ds+1] = (this[i]>>cbs)|c; | |
289 c = (this[i]&bm)<<bs; | |
290 } | |
291 for(i = ds-1; i >= 0; --i) r[i] = 0; | |
292 r[ds] = c; | |
293 r.t = this.t+ds+1; | |
294 r.s = this.s; | |
295 r.clamp(); | |
296 } | |
297 | |
298 // (protected) r = this >> n | |
299 function bnpRShiftTo(n,r) { | |
300 r.s = this.s; | |
301 var ds = Math.floor(n/this.DB); | |
302 if(ds >= this.t) { r.t = 0; return; } | |
303 var bs = n%this.DB; | |
304 var cbs = this.DB-bs; | |
305 var bm = (1<<bs)-1; | |
306 r[0] = this[ds]>>bs; | |
307 for(var i = ds+1; i < this.t; ++i) { | |
308 r[i-ds-1] |= (this[i]&bm)<<cbs; | |
309 r[i-ds] = this[i]>>bs; | |
310 } | |
311 if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; | |
312 r.t = this.t-ds; | |
313 r.clamp(); | |
314 } | |
315 | |
316 // (protected) r = this - a | |
317 function bnpSubTo(a,r) { | |
318 var i = 0, c = 0, m = Math.min(a.t,this.t); | |
319 while(i < m) { | |
320 c += this[i]-a[i]; | |
321 r[i++] = c&this.DM; | |
322 c >>= this.DB; | |
323 } | |
324 if(a.t < this.t) { | |
325 c -= a.s; | |
326 while(i < this.t) { | |
327 c += this[i]; | |
328 r[i++] = c&this.DM; | |
329 c >>= this.DB; | |
330 } | |
331 c += this.s; | |
332 } | |
333 else { | |
334 c += this.s; | |
335 while(i < a.t) { | |
336 c -= a[i]; | |
337 r[i++] = c&this.DM; | |
338 c >>= this.DB; | |
339 } | |
340 c -= a.s; | |
341 } | |
342 r.s = (c<0)?-1:0; | |
343 if(c < -1) r[i++] = this.DV+c; | |
344 else if(c > 0) r[i++] = c; | |
345 r.t = i; | |
346 r.clamp(); | |
347 } | |
348 | |
349 // (protected) r = this * a, r != this,a (HAC 14.12) | |
350 // "this" should be the larger one if appropriate. | |
351 function bnpMultiplyTo(a,r) { | |
352 var x = this.abs(), y = a.abs(); | |
353 var i = x.t; | |
354 r.t = i+y.t; | |
355 while(--i >= 0) r[i] = 0; | |
356 for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); | |
357 r.s = 0; | |
358 r.clamp(); | |
359 if(this.s != a.s) BigInteger.ZERO.subTo(r,r); | |
360 } | |
361 | |
362 // (protected) r = this^2, r != this (HAC 14.16) | |
363 function bnpSquareTo(r) { | |
364 var x = this.abs(); | |
365 var i = r.t = 2*x.t; | |
366 while(--i >= 0) r[i] = 0; | |
367 for(i = 0; i < x.t-1; ++i) { | |
368 var c = x.am(i,x[i],r,2*i,0,1); | |
369 if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { | |
370 r[i+x.t] -= x.DV; | |
371 r[i+x.t+1] = 1; | |
372 } | |
373 } | |
374 if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); | |
375 r.s = 0; | |
376 r.clamp(); | |
377 } | |
378 | |
379 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) | |
380 // r != q, this != m. q or r may be null. | |
381 function bnpDivRemTo(m,q,r) { | |
382 var pm = m.abs(); | |
383 if(pm.t <= 0) return; | |
384 var pt = this.abs(); | |
385 if(pt.t < pm.t) { | |
386 if(q != null) q.fromInt(0); | |
387 if(r != null) this.copyTo(r); | |
388 return; | |
389 } | |
390 if(r == null) r = nbi(); | |
391 var y = nbi(), ts = this.s, ms = m.s; | |
392 var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus | |
393 if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } | |
394 else { pm.copyTo(y); pt.copyTo(r); } | |
395 var ys = y.t; | |
396 var y0 = y[ys-1]; | |
397 if(y0 == 0) return; | |
398 var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); | |
399 var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; | |
400 var i = r.t, j = i-ys, t = (q==null)?nbi():q; | |
401 y.dlShiftTo(j,t); | |
402 if(r.compareTo(t) >= 0) { | |
403 r[r.t++] = 1; | |
404 r.subTo(t,r); | |
405 } | |
406 BigInteger.ONE.dlShiftTo(ys,t); | |
407 t.subTo(y,y); // "negative" y so we can replace sub with am later | |
408 while(y.t < ys) y[y.t++] = 0; | |
409 while(--j >= 0) { | |
410 // Estimate quotient digit | |
411 var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); | |
412 if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out | |
413 y.dlShiftTo(j,t); | |
414 r.subTo(t,r); | |
415 while(r[i] < --qd) r.subTo(t,r); | |
416 } | |
417 } | |
418 if(q != null) { | |
419 r.drShiftTo(ys,q); | |
420 if(ts != ms) BigInteger.ZERO.subTo(q,q); | |
421 } | |
422 r.t = ys; | |
423 r.clamp(); | |
424 if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder | |
425 if(ts < 0) BigInteger.ZERO.subTo(r,r); | |
426 } | |
427 | |
428 // (public) this mod a | |
429 function bnMod(a) { | |
430 var r = nbi(); | |
431 this.abs().divRemTo(a,null,r); | |
432 if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); | |
433 return r; | |
434 } | |
435 | |
436 // Modular reduction using "classic" algorithm | |
437 function Classic(m) { this.m = m; } | |
438 function cConvert(x) { | |
439 if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); | |
440 else return x; | |
441 } | |
442 function cRevert(x) { return x; } | |
443 function cReduce(x) { x.divRemTo(this.m,null,x); } | |
444 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | |
445 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | |
446 | |
447 Classic.prototype.convert = cConvert; | |
448 Classic.prototype.revert = cRevert; | |
449 Classic.prototype.reduce = cReduce; | |
450 Classic.prototype.mulTo = cMulTo; | |
451 Classic.prototype.sqrTo = cSqrTo; | |
452 | |
453 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction | |
454 // justification: | |
455 // xy == 1 (mod m) | |
456 // xy = 1+km | |
457 // xy(2-xy) = (1+km)(1-km) | |
458 // x[y(2-xy)] = 1-k^2m^2 | |
459 // x[y(2-xy)] == 1 (mod m^2) | |
460 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 | |
461 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. | |
462 // JS multiply "overflows" differently from C/C++, so care is needed here. | |
463 function bnpInvDigit() { | |
464 if(this.t < 1) return 0; | |
465 var x = this[0]; | |
466 if((x&1) == 0) return 0; | |
467 var y = x&3; // y == 1/x mod 2^2 | |
468 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 | |
469 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 | |
470 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 | |
471 // last step - calculate inverse mod DV directly; | |
472 // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints | |
473 y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits | |
474 // we really want the negative inverse, and -DV < y < DV | |
475 return (y>0)?this.DV-y:-y; | |
476 } | |
477 | |
478 // Montgomery reduction | |
479 function Montgomery(m) { | |
480 this.m = m; | |
481 this.mp = m.invDigit(); | |
482 this.mpl = this.mp&0x7fff; | |
483 this.mph = this.mp>>15; | |
484 this.um = (1<<(m.DB-15))-1; | |
485 this.mt2 = 2*m.t; | |
486 } | |
487 | |
488 // xR mod m | |
489 function montConvert(x) { | |
490 var r = nbi(); | |
491 x.abs().dlShiftTo(this.m.t,r); | |
492 r.divRemTo(this.m,null,r); | |
493 if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); | |
494 return r; | |
495 } | |
496 | |
497 // x/R mod m | |
498 function montRevert(x) { | |
499 var r = nbi(); | |
500 x.copyTo(r); | |
501 this.reduce(r); | |
502 return r; | |
503 } | |
504 | |
505 // x = x/R mod m (HAC 14.32) | |
506 function montReduce(x) { | |
507 while(x.t <= this.mt2) // pad x so am has enough room later | |
508 x[x.t++] = 0; | |
509 for(var i = 0; i < this.m.t; ++i) { | |
510 // faster way of calculating u0 = x[i]*mp mod DV | |
511 var j = x[i]&0x7fff; | |
512 var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; | |
513 // use am to combine the multiply-shift-add into one call | |
514 j = i+this.m.t; | |
515 x[j] += this.m.am(0,u0,x,i,0,this.m.t); | |
516 // propagate carry | |
517 while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } | |
518 } | |
519 x.clamp(); | |
520 x.drShiftTo(this.m.t,x); | |
521 if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); | |
522 } | |
523 | |
524 // r = "x^2/R mod m"; x != r | |
525 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } | |
526 | |
527 // r = "xy/R mod m"; x,y != r | |
528 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } | |
529 | |
530 Montgomery.prototype.convert = montConvert; | |
531 Montgomery.prototype.revert = montRevert; | |
532 Montgomery.prototype.reduce = montReduce; | |
533 Montgomery.prototype.mulTo = montMulTo; | |
534 Montgomery.prototype.sqrTo = montSqrTo; | |
535 | |
536 // (protected) true iff this is even | |
537 function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } | |
538 | |
539 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) | |
540 function bnpExp(e,z) { | |
541 if(e > 0xffffffff || e < 1) return BigInteger.ONE; | |
542 var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; | |
543 g.copyTo(r); | |
544 while(--i >= 0) { | |
545 z.sqrTo(r,r2); | |
546 if((e&(1<<i)) > 0) z.mulTo(r2,g,r); | |
547 else { var t = r; r = r2; r2 = t; } | |
548 } | |
549 return z.revert(r); | |
550 } | |
551 | |
552 // (public) this^e % m, 0 <= e < 2^32 | |
553 function bnModPowInt(e,m) { | |
554 var z; | |
555 if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); | |
556 return this.exp(e,z); | |
557 } | |
558 | |
559 // protected | |
560 BigInteger.prototype.copyTo = bnpCopyTo; | |
561 BigInteger.prototype.fromInt = bnpFromInt; | |
562 BigInteger.prototype.fromString = bnpFromString; | |
563 BigInteger.prototype.clamp = bnpClamp; | |
564 BigInteger.prototype.dlShiftTo = bnpDLShiftTo; | |
565 BigInteger.prototype.drShiftTo = bnpDRShiftTo; | |
566 BigInteger.prototype.lShiftTo = bnpLShiftTo; | |
567 BigInteger.prototype.rShiftTo = bnpRShiftTo; | |
568 BigInteger.prototype.subTo = bnpSubTo; | |
569 BigInteger.prototype.multiplyTo = bnpMultiplyTo; | |
570 BigInteger.prototype.squareTo = bnpSquareTo; | |
571 BigInteger.prototype.divRemTo = bnpDivRemTo; | |
572 BigInteger.prototype.invDigit = bnpInvDigit; | |
573 BigInteger.prototype.isEven = bnpIsEven; | |
574 BigInteger.prototype.exp = bnpExp; | |
575 | |
576 // public | |
577 BigInteger.prototype.toString = bnToString; | |
578 BigInteger.prototype.negate = bnNegate; | |
579 BigInteger.prototype.abs = bnAbs; | |
580 BigInteger.prototype.compareTo = bnCompareTo; | |
581 BigInteger.prototype.bitLength = bnBitLength; | |
582 BigInteger.prototype.mod = bnMod; | |
583 BigInteger.prototype.modPowInt = bnModPowInt; | |
584 | |
585 // "constants" | |
586 BigInteger.ZERO = nbv(0); | |
587 BigInteger.ONE = nbv(1); | |
OLD | NEW |