| OLD | NEW | 
 | (Empty) | 
|    1 /* |  | 
|    2  * Copyright (c) 2003-2005  Tom Wu |  | 
|    3  * All Rights Reserved. |  | 
|    4  * |  | 
|    5  * Permission is hereby granted, free of charge, to any person obtaining |  | 
|    6  * a copy of this software and associated documentation files (the |  | 
|    7  * "Software"), to deal in the Software without restriction, including |  | 
|    8  * without limitation the rights to use, copy, modify, merge, publish, |  | 
|    9  * distribute, sublicense, and/or sell copies of the Software, and to |  | 
|   10  * permit persons to whom the Software is furnished to do so, subject to |  | 
|   11  * the following conditions: |  | 
|   12  * |  | 
|   13  * The above copyright notice and this permission notice shall be |  | 
|   14  * included in all copies or substantial portions of the Software. |  | 
|   15  * |  | 
|   16  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |  | 
|   17  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |  | 
|   18  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |  | 
|   19  * |  | 
|   20  * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, |  | 
|   21  * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER |  | 
|   22  * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF |  | 
|   23  * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT |  | 
|   24  * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |  | 
|   25  * |  | 
|   26  * In addition, the following condition applies: |  | 
|   27  * |  | 
|   28  * All redistributions must retain an intact copy of this copyright notice |  | 
|   29  * and disclaimer. |  | 
|   30  */ |  | 
|   31  |  | 
|   32 // Basic JavaScript BN library - subset useful for RSA encryption. |  | 
|   33  |  | 
|   34 // Bits per digit |  | 
|   35 var dbits; |  | 
|   36  |  | 
|   37 // JavaScript engine analysis |  | 
|   38 var canary = 0xdeadbeefcafe; |  | 
|   39 var j_lm = ((canary&0xffffff)==0xefcafe); |  | 
|   40  |  | 
|   41 // (public) Constructor |  | 
|   42 function BigInteger(a,b,c) { |  | 
|   43   if(a != null) |  | 
|   44     if("number" == typeof a) this.fromNumber(a,b,c); |  | 
|   45     else if(b == null && "string" != typeof a) this.fromString(a,256); |  | 
|   46     else this.fromString(a,b); |  | 
|   47 } |  | 
|   48  |  | 
|   49 // return new, unset BigInteger |  | 
|   50 function nbi() { return new BigInteger(null); } |  | 
|   51  |  | 
|   52 // am: Compute w_j += (x*this_i), propagate carries, |  | 
|   53 // c is initial carry, returns final carry. |  | 
|   54 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue |  | 
|   55 // We need to select the fastest one that works in this environment. |  | 
|   56  |  | 
|   57 // am1: use a single mult and divide to get the high bits, |  | 
|   58 // max digit bits should be 26 because |  | 
|   59 // max internal value = 2*dvalue^2-2*dvalue (< 2^53) |  | 
|   60 function am1(i,x,w,j,c,n) { |  | 
|   61   while(--n >= 0) { |  | 
|   62     var v = x*this[i++]+w[j]+c; |  | 
|   63     c = Math.floor(v/0x4000000); |  | 
|   64     w[j++] = v&0x3ffffff; |  | 
|   65   } |  | 
|   66   return c; |  | 
|   67 } |  | 
|   68 // am2 avoids a big mult-and-extract completely. |  | 
|   69 // Max digit bits should be <= 30 because we do bitwise ops |  | 
|   70 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) |  | 
|   71 function am2(i,x,w,j,c,n) { |  | 
|   72   var xl = x&0x7fff, xh = x>>15; |  | 
|   73   while(--n >= 0) { |  | 
|   74     var l = this[i]&0x7fff; |  | 
|   75     var h = this[i++]>>15; |  | 
|   76     var m = xh*l+h*xl; |  | 
|   77     l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); |  | 
|   78     c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); |  | 
|   79     w[j++] = l&0x3fffffff; |  | 
|   80   } |  | 
|   81   return c; |  | 
|   82 } |  | 
|   83 // Alternately, set max digit bits to 28 since some |  | 
|   84 // browsers slow down when dealing with 32-bit numbers. |  | 
|   85 function am3(i,x,w,j,c,n) { |  | 
|   86   var xl = x&0x3fff, xh = x>>14; |  | 
|   87   while(--n >= 0) { |  | 
|   88     var l = this[i]&0x3fff; |  | 
|   89     var h = this[i++]>>14; |  | 
|   90     var m = xh*l+h*xl; |  | 
|   91     l = xl*l+((m&0x3fff)<<14)+w[j]+c; |  | 
|   92     c = (l>>28)+(m>>14)+xh*h; |  | 
|   93     w[j++] = l&0xfffffff; |  | 
|   94   } |  | 
|   95   return c; |  | 
|   96 } |  | 
|   97 if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { |  | 
|   98   BigInteger.prototype.am = am2; |  | 
|   99   dbits = 30; |  | 
|  100 } |  | 
|  101 else if(j_lm && (navigator.appName != "Netscape")) { |  | 
|  102   BigInteger.prototype.am = am1; |  | 
|  103   dbits = 26; |  | 
|  104 } |  | 
|  105 else { // Mozilla/Netscape seems to prefer am3 |  | 
|  106   BigInteger.prototype.am = am3; |  | 
|  107   dbits = 28; |  | 
|  108 } |  | 
|  109  |  | 
|  110 BigInteger.prototype.DB = dbits; |  | 
|  111 BigInteger.prototype.DM = ((1<<dbits)-1); |  | 
|  112 BigInteger.prototype.DV = (1<<dbits); |  | 
|  113  |  | 
|  114 var BI_FP = 52; |  | 
|  115 BigInteger.prototype.FV = Math.pow(2,BI_FP); |  | 
|  116 BigInteger.prototype.F1 = BI_FP-dbits; |  | 
|  117 BigInteger.prototype.F2 = 2*dbits-BI_FP; |  | 
|  118  |  | 
|  119 // Digit conversions |  | 
|  120 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; |  | 
|  121 var BI_RC = new Array(); |  | 
|  122 var rr,vv; |  | 
|  123 rr = "0".charCodeAt(0); |  | 
|  124 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; |  | 
|  125 rr = "a".charCodeAt(0); |  | 
|  126 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |  | 
|  127 rr = "A".charCodeAt(0); |  | 
|  128 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |  | 
|  129  |  | 
|  130 function int2char(n) { return BI_RM.charAt(n); } |  | 
|  131 function intAt(s,i) { |  | 
|  132   var c = BI_RC[s.charCodeAt(i)]; |  | 
|  133   return (c==null)?-1:c; |  | 
|  134 } |  | 
|  135  |  | 
|  136 // (protected) copy this to r |  | 
|  137 function bnpCopyTo(r) { |  | 
|  138   for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; |  | 
|  139   r.t = this.t; |  | 
|  140   r.s = this.s; |  | 
|  141 } |  | 
|  142  |  | 
|  143 // (protected) set from integer value x, -DV <= x < DV |  | 
|  144 function bnpFromInt(x) { |  | 
|  145   this.t = 1; |  | 
|  146   this.s = (x<0)?-1:0; |  | 
|  147   if(x > 0) this[0] = x; |  | 
|  148   else if(x < -1) this[0] = x+DV; |  | 
|  149   else this.t = 0; |  | 
|  150 } |  | 
|  151  |  | 
|  152 // return bigint initialized to value |  | 
|  153 function nbv(i) { var r = nbi(); r.fromInt(i); return r; } |  | 
|  154  |  | 
|  155 // (protected) set from string and radix |  | 
|  156 function bnpFromString(s,b) { |  | 
|  157   var k; |  | 
|  158   if(b == 16) k = 4; |  | 
|  159   else if(b == 8) k = 3; |  | 
|  160   else if(b == 256) k = 8; // byte array |  | 
|  161   else if(b == 2) k = 1; |  | 
|  162   else if(b == 32) k = 5; |  | 
|  163   else if(b == 4) k = 2; |  | 
|  164   else { this.fromRadix(s,b); return; } |  | 
|  165   this.t = 0; |  | 
|  166   this.s = 0; |  | 
|  167   var i = s.length, mi = false, sh = 0; |  | 
|  168   while(--i >= 0) { |  | 
|  169     var x = (k==8)?s.charCodeAt(i)&0xff:intAt(s,i);   /** MODIFIED **/ |  | 
|  170     if(x < 0) { |  | 
|  171       if(s.charAt(i) == "-") mi = true; |  | 
|  172       continue; |  | 
|  173     } |  | 
|  174     mi = false; |  | 
|  175     if(sh == 0) |  | 
|  176       this[this.t++] = x; |  | 
|  177     else if(sh+k > this.DB) { |  | 
|  178       this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; |  | 
|  179       this[this.t++] = (x>>(this.DB-sh)); |  | 
|  180     } |  | 
|  181     else |  | 
|  182       this[this.t-1] |= x<<sh; |  | 
|  183     sh += k; |  | 
|  184     if(sh >= this.DB) sh -= this.DB; |  | 
|  185   } |  | 
|  186   if(k == 8 && (s[0]&0x80) != 0) { |  | 
|  187     this.s = -1; |  | 
|  188     if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; |  | 
|  189   } |  | 
|  190   this.clamp(); |  | 
|  191   if(mi) BigInteger.ZERO.subTo(this,this); |  | 
|  192 } |  | 
|  193  |  | 
|  194 // (protected) clamp off excess high words |  | 
|  195 function bnpClamp() { |  | 
|  196   var c = this.s&this.DM; |  | 
|  197   while(this.t > 0 && this[this.t-1] == c) --this.t; |  | 
|  198 } |  | 
|  199  |  | 
|  200 // (public) return string representation in given radix |  | 
|  201 function bnToString(b) { |  | 
|  202   if(this.s < 0) return "-"+this.negate().toString(b); |  | 
|  203   var k; |  | 
|  204   if(b == 16) k = 4; |  | 
|  205   else if(b == 8) k = 3; |  | 
|  206   else if(b == 256) k = 8; // byte array      /** MODIFIED **/ |  | 
|  207   else if(b == 2) k = 1; |  | 
|  208   else if(b == 32) k = 5; |  | 
|  209   else if(b == 4) k = 2; |  | 
|  210   else return this.toRadix(b); |  | 
|  211   var km = (1<<k)-1, d, m = false, r = "", i = this.t; |  | 
|  212   var p = this.DB-(i*this.DB)%k; |  | 
|  213   if(i-- > 0) { |  | 
|  214     if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = (k==8)?String.fromCh
     arCode(d):int2char(d); }   /** MODIFIED **/ |  | 
|  215     while(i >= 0) { |  | 
|  216       if(p < k) { |  | 
|  217         d = (this[i]&((1<<p)-1))<<(k-p); |  | 
|  218         d |= this[--i]>>(p+=this.DB-k); |  | 
|  219       } |  | 
|  220       else { |  | 
|  221         d = (this[i]>>(p-=k))&km; |  | 
|  222         if(p <= 0) { p += this.DB; --i; } |  | 
|  223       } |  | 
|  224       if(d > 0) m = true; |  | 
|  225       if(m) r += (k==8)?String.fromCharCode(d):int2char(d);    /** MODIFIED **/ |  | 
|  226     } |  | 
|  227   } |  | 
|  228   return m?r:"0"; |  | 
|  229 } |  | 
|  230  |  | 
|  231 // (public) -this |  | 
|  232 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } |  | 
|  233  |  | 
|  234 // (public) |this| |  | 
|  235 function bnAbs() { return (this.s<0)?this.negate():this; } |  | 
|  236  |  | 
|  237 // (public) return + if this > a, - if this < a, 0 if equal |  | 
|  238 function bnCompareTo(a) { |  | 
|  239   var r = this.s-a.s; |  | 
|  240   if(r != 0) return r; |  | 
|  241   var i = this.t; |  | 
|  242   r = i-a.t; |  | 
|  243   if(r != 0) return r; |  | 
|  244   while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; |  | 
|  245   return 0; |  | 
|  246 } |  | 
|  247  |  | 
|  248 // returns bit length of the integer x |  | 
|  249 function nbits(x) { |  | 
|  250   var r = 1, t; |  | 
|  251   if((t=x>>>16) != 0) { x = t; r += 16; } |  | 
|  252   if((t=x>>8) != 0) { x = t; r += 8; } |  | 
|  253   if((t=x>>4) != 0) { x = t; r += 4; } |  | 
|  254   if((t=x>>2) != 0) { x = t; r += 2; } |  | 
|  255   if((t=x>>1) != 0) { x = t; r += 1; } |  | 
|  256   return r; |  | 
|  257 } |  | 
|  258  |  | 
|  259 // (public) return the number of bits in "this" |  | 
|  260 function bnBitLength() { |  | 
|  261   if(this.t <= 0) return 0; |  | 
|  262   return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); |  | 
|  263 } |  | 
|  264  |  | 
|  265 // (protected) r = this << n*DB |  | 
|  266 function bnpDLShiftTo(n,r) { |  | 
|  267   var i; |  | 
|  268   for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; |  | 
|  269   for(i = n-1; i >= 0; --i) r[i] = 0; |  | 
|  270   r.t = this.t+n; |  | 
|  271   r.s = this.s; |  | 
|  272 } |  | 
|  273  |  | 
|  274 // (protected) r = this >> n*DB |  | 
|  275 function bnpDRShiftTo(n,r) { |  | 
|  276   for(var i = n; i < this.t; ++i) r[i-n] = this[i]; |  | 
|  277   r.t = Math.max(this.t-n,0); |  | 
|  278   r.s = this.s; |  | 
|  279 } |  | 
|  280  |  | 
|  281 // (protected) r = this << n |  | 
|  282 function bnpLShiftTo(n,r) { |  | 
|  283   var bs = n%this.DB; |  | 
|  284   var cbs = this.DB-bs; |  | 
|  285   var bm = (1<<cbs)-1; |  | 
|  286   var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; |  | 
|  287   for(i = this.t-1; i >= 0; --i) { |  | 
|  288     r[i+ds+1] = (this[i]>>cbs)|c; |  | 
|  289     c = (this[i]&bm)<<bs; |  | 
|  290   } |  | 
|  291   for(i = ds-1; i >= 0; --i) r[i] = 0; |  | 
|  292   r[ds] = c; |  | 
|  293   r.t = this.t+ds+1; |  | 
|  294   r.s = this.s; |  | 
|  295   r.clamp(); |  | 
|  296 } |  | 
|  297  |  | 
|  298 // (protected) r = this >> n |  | 
|  299 function bnpRShiftTo(n,r) { |  | 
|  300   r.s = this.s; |  | 
|  301   var ds = Math.floor(n/this.DB); |  | 
|  302   if(ds >= this.t) { r.t = 0; return; } |  | 
|  303   var bs = n%this.DB; |  | 
|  304   var cbs = this.DB-bs; |  | 
|  305   var bm = (1<<bs)-1; |  | 
|  306   r[0] = this[ds]>>bs; |  | 
|  307   for(var i = ds+1; i < this.t; ++i) { |  | 
|  308     r[i-ds-1] |= (this[i]&bm)<<cbs; |  | 
|  309     r[i-ds] = this[i]>>bs; |  | 
|  310   } |  | 
|  311   if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; |  | 
|  312   r.t = this.t-ds; |  | 
|  313   r.clamp(); |  | 
|  314 } |  | 
|  315  |  | 
|  316 // (protected) r = this - a |  | 
|  317 function bnpSubTo(a,r) { |  | 
|  318   var i = 0, c = 0, m = Math.min(a.t,this.t); |  | 
|  319   while(i < m) { |  | 
|  320     c += this[i]-a[i]; |  | 
|  321     r[i++] = c&this.DM; |  | 
|  322     c >>= this.DB; |  | 
|  323   } |  | 
|  324   if(a.t < this.t) { |  | 
|  325     c -= a.s; |  | 
|  326     while(i < this.t) { |  | 
|  327       c += this[i]; |  | 
|  328       r[i++] = c&this.DM; |  | 
|  329       c >>= this.DB; |  | 
|  330     } |  | 
|  331     c += this.s; |  | 
|  332   } |  | 
|  333   else { |  | 
|  334     c += this.s; |  | 
|  335     while(i < a.t) { |  | 
|  336       c -= a[i]; |  | 
|  337       r[i++] = c&this.DM; |  | 
|  338       c >>= this.DB; |  | 
|  339     } |  | 
|  340     c -= a.s; |  | 
|  341   } |  | 
|  342   r.s = (c<0)?-1:0; |  | 
|  343   if(c < -1) r[i++] = this.DV+c; |  | 
|  344   else if(c > 0) r[i++] = c; |  | 
|  345   r.t = i; |  | 
|  346   r.clamp(); |  | 
|  347 } |  | 
|  348  |  | 
|  349 // (protected) r = this * a, r != this,a (HAC 14.12) |  | 
|  350 // "this" should be the larger one if appropriate. |  | 
|  351 function bnpMultiplyTo(a,r) { |  | 
|  352   var x = this.abs(), y = a.abs(); |  | 
|  353   var i = x.t; |  | 
|  354   r.t = i+y.t; |  | 
|  355   while(--i >= 0) r[i] = 0; |  | 
|  356   for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); |  | 
|  357   r.s = 0; |  | 
|  358   r.clamp(); |  | 
|  359   if(this.s != a.s) BigInteger.ZERO.subTo(r,r); |  | 
|  360 } |  | 
|  361  |  | 
|  362 // (protected) r = this^2, r != this (HAC 14.16) |  | 
|  363 function bnpSquareTo(r) { |  | 
|  364   var x = this.abs(); |  | 
|  365   var i = r.t = 2*x.t; |  | 
|  366   while(--i >= 0) r[i] = 0; |  | 
|  367   for(i = 0; i < x.t-1; ++i) { |  | 
|  368     var c = x.am(i,x[i],r,2*i,0,1); |  | 
|  369     if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { |  | 
|  370       r[i+x.t] -= x.DV; |  | 
|  371       r[i+x.t+1] = 1; |  | 
|  372     } |  | 
|  373   } |  | 
|  374   if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); |  | 
|  375   r.s = 0; |  | 
|  376   r.clamp(); |  | 
|  377 } |  | 
|  378  |  | 
|  379 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) |  | 
|  380 // r != q, this != m.  q or r may be null. |  | 
|  381 function bnpDivRemTo(m,q,r) { |  | 
|  382   var pm = m.abs(); |  | 
|  383   if(pm.t <= 0) return; |  | 
|  384   var pt = this.abs(); |  | 
|  385   if(pt.t < pm.t) { |  | 
|  386     if(q != null) q.fromInt(0); |  | 
|  387     if(r != null) this.copyTo(r); |  | 
|  388     return; |  | 
|  389   } |  | 
|  390   if(r == null) r = nbi(); |  | 
|  391   var y = nbi(), ts = this.s, ms = m.s; |  | 
|  392   var nsh = this.DB-nbits(pm[pm.t-1]);  // normalize modulus |  | 
|  393   if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } |  | 
|  394   else { pm.copyTo(y); pt.copyTo(r); } |  | 
|  395   var ys = y.t; |  | 
|  396   var y0 = y[ys-1]; |  | 
|  397   if(y0 == 0) return; |  | 
|  398   var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); |  | 
|  399   var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; |  | 
|  400   var i = r.t, j = i-ys, t = (q==null)?nbi():q; |  | 
|  401   y.dlShiftTo(j,t); |  | 
|  402   if(r.compareTo(t) >= 0) { |  | 
|  403     r[r.t++] = 1; |  | 
|  404     r.subTo(t,r); |  | 
|  405   } |  | 
|  406   BigInteger.ONE.dlShiftTo(ys,t); |  | 
|  407   t.subTo(y,y); // "negative" y so we can replace sub with am later |  | 
|  408   while(y.t < ys) y[y.t++] = 0; |  | 
|  409   while(--j >= 0) { |  | 
|  410     // Estimate quotient digit |  | 
|  411     var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); |  | 
|  412     if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {      // Try it out |  | 
|  413       y.dlShiftTo(j,t); |  | 
|  414       r.subTo(t,r); |  | 
|  415       while(r[i] < --qd) r.subTo(t,r); |  | 
|  416     } |  | 
|  417   } |  | 
|  418   if(q != null) { |  | 
|  419     r.drShiftTo(ys,q); |  | 
|  420     if(ts != ms) BigInteger.ZERO.subTo(q,q); |  | 
|  421   } |  | 
|  422   r.t = ys; |  | 
|  423   r.clamp(); |  | 
|  424   if(nsh > 0) r.rShiftTo(nsh,r);        // Denormalize remainder |  | 
|  425   if(ts < 0) BigInteger.ZERO.subTo(r,r); |  | 
|  426 } |  | 
|  427  |  | 
|  428 // (public) this mod a |  | 
|  429 function bnMod(a) { |  | 
|  430   var r = nbi(); |  | 
|  431   this.abs().divRemTo(a,null,r); |  | 
|  432   if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); |  | 
|  433   return r; |  | 
|  434 } |  | 
|  435  |  | 
|  436 // Modular reduction using "classic" algorithm |  | 
|  437 function Classic(m) { this.m = m; } |  | 
|  438 function cConvert(x) { |  | 
|  439   if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); |  | 
|  440   else return x; |  | 
|  441 } |  | 
|  442 function cRevert(x) { return x; } |  | 
|  443 function cReduce(x) { x.divRemTo(this.m,null,x); } |  | 
|  444 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |  | 
|  445 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |  | 
|  446  |  | 
|  447 Classic.prototype.convert = cConvert; |  | 
|  448 Classic.prototype.revert = cRevert; |  | 
|  449 Classic.prototype.reduce = cReduce; |  | 
|  450 Classic.prototype.mulTo = cMulTo; |  | 
|  451 Classic.prototype.sqrTo = cSqrTo; |  | 
|  452  |  | 
|  453 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction |  | 
|  454 // justification: |  | 
|  455 //         xy == 1 (mod m) |  | 
|  456 //         xy =  1+km |  | 
|  457 //   xy(2-xy) = (1+km)(1-km) |  | 
|  458 // x[y(2-xy)] = 1-k^2m^2 |  | 
|  459 // x[y(2-xy)] == 1 (mod m^2) |  | 
|  460 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 |  | 
|  461 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. |  | 
|  462 // JS multiply "overflows" differently from C/C++, so care is needed here. |  | 
|  463 function bnpInvDigit() { |  | 
|  464   if(this.t < 1) return 0; |  | 
|  465   var x = this[0]; |  | 
|  466   if((x&1) == 0) return 0; |  | 
|  467   var y = x&3;          // y == 1/x mod 2^2 |  | 
|  468   y = (y*(2-(x&0xf)*y))&0xf;    // y == 1/x mod 2^4 |  | 
|  469   y = (y*(2-(x&0xff)*y))&0xff;  // y == 1/x mod 2^8 |  | 
|  470   y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;   // y == 1/x mod 2^16 |  | 
|  471   // last step - calculate inverse mod DV directly; |  | 
|  472   // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints |  | 
|  473   y = (y*(2-x*y%this.DV))%this.DV;              // y == 1/x mod 2^dbits |  | 
|  474   // we really want the negative inverse, and -DV < y < DV |  | 
|  475   return (y>0)?this.DV-y:-y; |  | 
|  476 } |  | 
|  477  |  | 
|  478 // Montgomery reduction |  | 
|  479 function Montgomery(m) { |  | 
|  480   this.m = m; |  | 
|  481   this.mp = m.invDigit(); |  | 
|  482   this.mpl = this.mp&0x7fff; |  | 
|  483   this.mph = this.mp>>15; |  | 
|  484   this.um = (1<<(m.DB-15))-1; |  | 
|  485   this.mt2 = 2*m.t; |  | 
|  486 } |  | 
|  487  |  | 
|  488 // xR mod m |  | 
|  489 function montConvert(x) { |  | 
|  490   var r = nbi(); |  | 
|  491   x.abs().dlShiftTo(this.m.t,r); |  | 
|  492   r.divRemTo(this.m,null,r); |  | 
|  493   if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); |  | 
|  494   return r; |  | 
|  495 } |  | 
|  496  |  | 
|  497 // x/R mod m |  | 
|  498 function montRevert(x) { |  | 
|  499   var r = nbi(); |  | 
|  500   x.copyTo(r); |  | 
|  501   this.reduce(r); |  | 
|  502   return r; |  | 
|  503 } |  | 
|  504  |  | 
|  505 // x = x/R mod m (HAC 14.32) |  | 
|  506 function montReduce(x) { |  | 
|  507   while(x.t <= this.mt2)        // pad x so am has enough room later |  | 
|  508     x[x.t++] = 0; |  | 
|  509   for(var i = 0; i < this.m.t; ++i) { |  | 
|  510     // faster way of calculating u0 = x[i]*mp mod DV |  | 
|  511     var j = x[i]&0x7fff; |  | 
|  512     var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; |  | 
|  513     // use am to combine the multiply-shift-add into one call |  | 
|  514     j = i+this.m.t; |  | 
|  515     x[j] += this.m.am(0,u0,x,i,0,this.m.t); |  | 
|  516     // propagate carry |  | 
|  517     while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } |  | 
|  518   } |  | 
|  519   x.clamp(); |  | 
|  520   x.drShiftTo(this.m.t,x); |  | 
|  521   if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); |  | 
|  522 } |  | 
|  523  |  | 
|  524 // r = "x^2/R mod m"; x != r |  | 
|  525 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |  | 
|  526  |  | 
|  527 // r = "xy/R mod m"; x,y != r |  | 
|  528 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |  | 
|  529  |  | 
|  530 Montgomery.prototype.convert = montConvert; |  | 
|  531 Montgomery.prototype.revert = montRevert; |  | 
|  532 Montgomery.prototype.reduce = montReduce; |  | 
|  533 Montgomery.prototype.mulTo = montMulTo; |  | 
|  534 Montgomery.prototype.sqrTo = montSqrTo; |  | 
|  535  |  | 
|  536 // (protected) true iff this is even |  | 
|  537 function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } |  | 
|  538  |  | 
|  539 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) |  | 
|  540 function bnpExp(e,z) { |  | 
|  541   if(e > 0xffffffff || e < 1) return BigInteger.ONE; |  | 
|  542   var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; |  | 
|  543   g.copyTo(r); |  | 
|  544   while(--i >= 0) { |  | 
|  545     z.sqrTo(r,r2); |  | 
|  546     if((e&(1<<i)) > 0) z.mulTo(r2,g,r); |  | 
|  547     else { var t = r; r = r2; r2 = t; } |  | 
|  548   } |  | 
|  549   return z.revert(r); |  | 
|  550 } |  | 
|  551  |  | 
|  552 // (public) this^e % m, 0 <= e < 2^32 |  | 
|  553 function bnModPowInt(e,m) { |  | 
|  554   var z; |  | 
|  555   if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); |  | 
|  556   return this.exp(e,z); |  | 
|  557 } |  | 
|  558  |  | 
|  559 // protected |  | 
|  560 BigInteger.prototype.copyTo = bnpCopyTo; |  | 
|  561 BigInteger.prototype.fromInt = bnpFromInt; |  | 
|  562 BigInteger.prototype.fromString = bnpFromString; |  | 
|  563 BigInteger.prototype.clamp = bnpClamp; |  | 
|  564 BigInteger.prototype.dlShiftTo = bnpDLShiftTo; |  | 
|  565 BigInteger.prototype.drShiftTo = bnpDRShiftTo; |  | 
|  566 BigInteger.prototype.lShiftTo = bnpLShiftTo; |  | 
|  567 BigInteger.prototype.rShiftTo = bnpRShiftTo; |  | 
|  568 BigInteger.prototype.subTo = bnpSubTo; |  | 
|  569 BigInteger.prototype.multiplyTo = bnpMultiplyTo; |  | 
|  570 BigInteger.prototype.squareTo = bnpSquareTo; |  | 
|  571 BigInteger.prototype.divRemTo = bnpDivRemTo; |  | 
|  572 BigInteger.prototype.invDigit = bnpInvDigit; |  | 
|  573 BigInteger.prototype.isEven = bnpIsEven; |  | 
|  574 BigInteger.prototype.exp = bnpExp; |  | 
|  575  |  | 
|  576 // public |  | 
|  577 BigInteger.prototype.toString = bnToString; |  | 
|  578 BigInteger.prototype.negate = bnNegate; |  | 
|  579 BigInteger.prototype.abs = bnAbs; |  | 
|  580 BigInteger.prototype.compareTo = bnCompareTo; |  | 
|  581 BigInteger.prototype.bitLength = bnBitLength; |  | 
|  582 BigInteger.prototype.mod = bnMod; |  | 
|  583 BigInteger.prototype.modPowInt = bnModPowInt; |  | 
|  584  |  | 
|  585 // "constants" |  | 
|  586 BigInteger.ZERO = nbv(0); |  | 
|  587 BigInteger.ONE = nbv(1); |  | 
| OLD | NEW |