Rietveld Code Review Tool
Help | Bug tracker | Discussion group | Source code

Side by Side Diff: lib/jsbn.js

Issue 29354778: Issue 4466 - Remove rsa.js, update core + buildtools (Closed)
Patch Set: Removed signature tests, they are tested in adblockpluscore Created Sept. 23, 2016, 1:51 p.m.
Left:
Right:
Use n/p to move between diff chunks; N/P to move between comments.
Jump to:
View unified diff | Download patch
« no previous file with comments | « dependencies ('k') | lib/rsa.js » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2003-2005 Tom Wu
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining
6 * a copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be
14 * included in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
17 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
18 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
19 *
20 * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
21 * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
22 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
23 * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
24 * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 *
26 * In addition, the following condition applies:
27 *
28 * All redistributions must retain an intact copy of this copyright notice
29 * and disclaimer.
30 */
31
32 // Basic JavaScript BN library - subset useful for RSA encryption.
33
34 // Bits per digit
35 var dbits;
36
37 // JavaScript engine analysis
38 var canary = 0xdeadbeefcafe;
39 var j_lm = ((canary&0xffffff)==0xefcafe);
40
41 // (public) Constructor
42 function BigInteger(a,b,c) {
43 if(a != null)
44 if("number" == typeof a) this.fromNumber(a,b,c);
45 else if(b == null && "string" != typeof a) this.fromString(a,256);
46 else this.fromString(a,b);
47 }
48
49 // return new, unset BigInteger
50 function nbi() { return new BigInteger(null); }
51
52 // am: Compute w_j += (x*this_i), propagate carries,
53 // c is initial carry, returns final carry.
54 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
55 // We need to select the fastest one that works in this environment.
56
57 // am1: use a single mult and divide to get the high bits,
58 // max digit bits should be 26 because
59 // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
60 function am1(i,x,w,j,c,n) {
61 while(--n >= 0) {
62 var v = x*this[i++]+w[j]+c;
63 c = Math.floor(v/0x4000000);
64 w[j++] = v&0x3ffffff;
65 }
66 return c;
67 }
68 // am2 avoids a big mult-and-extract completely.
69 // Max digit bits should be <= 30 because we do bitwise ops
70 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
71 function am2(i,x,w,j,c,n) {
72 var xl = x&0x7fff, xh = x>>15;
73 while(--n >= 0) {
74 var l = this[i]&0x7fff;
75 var h = this[i++]>>15;
76 var m = xh*l+h*xl;
77 l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
78 c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
79 w[j++] = l&0x3fffffff;
80 }
81 return c;
82 }
83 // Alternately, set max digit bits to 28 since some
84 // browsers slow down when dealing with 32-bit numbers.
85 function am3(i,x,w,j,c,n) {
86 var xl = x&0x3fff, xh = x>>14;
87 while(--n >= 0) {
88 var l = this[i]&0x3fff;
89 var h = this[i++]>>14;
90 var m = xh*l+h*xl;
91 l = xl*l+((m&0x3fff)<<14)+w[j]+c;
92 c = (l>>28)+(m>>14)+xh*h;
93 w[j++] = l&0xfffffff;
94 }
95 return c;
96 }
97 if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
98 BigInteger.prototype.am = am2;
99 dbits = 30;
100 }
101 else if(j_lm && (navigator.appName != "Netscape")) {
102 BigInteger.prototype.am = am1;
103 dbits = 26;
104 }
105 else { // Mozilla/Netscape seems to prefer am3
106 BigInteger.prototype.am = am3;
107 dbits = 28;
108 }
109
110 BigInteger.prototype.DB = dbits;
111 BigInteger.prototype.DM = ((1<<dbits)-1);
112 BigInteger.prototype.DV = (1<<dbits);
113
114 var BI_FP = 52;
115 BigInteger.prototype.FV = Math.pow(2,BI_FP);
116 BigInteger.prototype.F1 = BI_FP-dbits;
117 BigInteger.prototype.F2 = 2*dbits-BI_FP;
118
119 // Digit conversions
120 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
121 var BI_RC = new Array();
122 var rr,vv;
123 rr = "0".charCodeAt(0);
124 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
125 rr = "a".charCodeAt(0);
126 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
127 rr = "A".charCodeAt(0);
128 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
129
130 function int2char(n) { return BI_RM.charAt(n); }
131 function intAt(s,i) {
132 var c = BI_RC[s.charCodeAt(i)];
133 return (c==null)?-1:c;
134 }
135
136 // (protected) copy this to r
137 function bnpCopyTo(r) {
138 for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
139 r.t = this.t;
140 r.s = this.s;
141 }
142
143 // (protected) set from integer value x, -DV <= x < DV
144 function bnpFromInt(x) {
145 this.t = 1;
146 this.s = (x<0)?-1:0;
147 if(x > 0) this[0] = x;
148 else if(x < -1) this[0] = x+DV;
149 else this.t = 0;
150 }
151
152 // return bigint initialized to value
153 function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
154
155 // (protected) set from string and radix
156 function bnpFromString(s,b) {
157 var k;
158 if(b == 16) k = 4;
159 else if(b == 8) k = 3;
160 else if(b == 256) k = 8; // byte array
161 else if(b == 2) k = 1;
162 else if(b == 32) k = 5;
163 else if(b == 4) k = 2;
164 else { this.fromRadix(s,b); return; }
165 this.t = 0;
166 this.s = 0;
167 var i = s.length, mi = false, sh = 0;
168 while(--i >= 0) {
169 var x = (k==8)?s.charCodeAt(i)&0xff:intAt(s,i); /** MODIFIED **/
170 if(x < 0) {
171 if(s.charAt(i) == "-") mi = true;
172 continue;
173 }
174 mi = false;
175 if(sh == 0)
176 this[this.t++] = x;
177 else if(sh+k > this.DB) {
178 this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
179 this[this.t++] = (x>>(this.DB-sh));
180 }
181 else
182 this[this.t-1] |= x<<sh;
183 sh += k;
184 if(sh >= this.DB) sh -= this.DB;
185 }
186 if(k == 8 && (s[0]&0x80) != 0) {
187 this.s = -1;
188 if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
189 }
190 this.clamp();
191 if(mi) BigInteger.ZERO.subTo(this,this);
192 }
193
194 // (protected) clamp off excess high words
195 function bnpClamp() {
196 var c = this.s&this.DM;
197 while(this.t > 0 && this[this.t-1] == c) --this.t;
198 }
199
200 // (public) return string representation in given radix
201 function bnToString(b) {
202 if(this.s < 0) return "-"+this.negate().toString(b);
203 var k;
204 if(b == 16) k = 4;
205 else if(b == 8) k = 3;
206 else if(b == 256) k = 8; // byte array /** MODIFIED **/
207 else if(b == 2) k = 1;
208 else if(b == 32) k = 5;
209 else if(b == 4) k = 2;
210 else return this.toRadix(b);
211 var km = (1<<k)-1, d, m = false, r = "", i = this.t;
212 var p = this.DB-(i*this.DB)%k;
213 if(i-- > 0) {
214 if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = (k==8)?String.fromCh arCode(d):int2char(d); } /** MODIFIED **/
215 while(i >= 0) {
216 if(p < k) {
217 d = (this[i]&((1<<p)-1))<<(k-p);
218 d |= this[--i]>>(p+=this.DB-k);
219 }
220 else {
221 d = (this[i]>>(p-=k))&km;
222 if(p <= 0) { p += this.DB; --i; }
223 }
224 if(d > 0) m = true;
225 if(m) r += (k==8)?String.fromCharCode(d):int2char(d); /** MODIFIED **/
226 }
227 }
228 return m?r:"0";
229 }
230
231 // (public) -this
232 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
233
234 // (public) |this|
235 function bnAbs() { return (this.s<0)?this.negate():this; }
236
237 // (public) return + if this > a, - if this < a, 0 if equal
238 function bnCompareTo(a) {
239 var r = this.s-a.s;
240 if(r != 0) return r;
241 var i = this.t;
242 r = i-a.t;
243 if(r != 0) return r;
244 while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
245 return 0;
246 }
247
248 // returns bit length of the integer x
249 function nbits(x) {
250 var r = 1, t;
251 if((t=x>>>16) != 0) { x = t; r += 16; }
252 if((t=x>>8) != 0) { x = t; r += 8; }
253 if((t=x>>4) != 0) { x = t; r += 4; }
254 if((t=x>>2) != 0) { x = t; r += 2; }
255 if((t=x>>1) != 0) { x = t; r += 1; }
256 return r;
257 }
258
259 // (public) return the number of bits in "this"
260 function bnBitLength() {
261 if(this.t <= 0) return 0;
262 return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
263 }
264
265 // (protected) r = this << n*DB
266 function bnpDLShiftTo(n,r) {
267 var i;
268 for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
269 for(i = n-1; i >= 0; --i) r[i] = 0;
270 r.t = this.t+n;
271 r.s = this.s;
272 }
273
274 // (protected) r = this >> n*DB
275 function bnpDRShiftTo(n,r) {
276 for(var i = n; i < this.t; ++i) r[i-n] = this[i];
277 r.t = Math.max(this.t-n,0);
278 r.s = this.s;
279 }
280
281 // (protected) r = this << n
282 function bnpLShiftTo(n,r) {
283 var bs = n%this.DB;
284 var cbs = this.DB-bs;
285 var bm = (1<<cbs)-1;
286 var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
287 for(i = this.t-1; i >= 0; --i) {
288 r[i+ds+1] = (this[i]>>cbs)|c;
289 c = (this[i]&bm)<<bs;
290 }
291 for(i = ds-1; i >= 0; --i) r[i] = 0;
292 r[ds] = c;
293 r.t = this.t+ds+1;
294 r.s = this.s;
295 r.clamp();
296 }
297
298 // (protected) r = this >> n
299 function bnpRShiftTo(n,r) {
300 r.s = this.s;
301 var ds = Math.floor(n/this.DB);
302 if(ds >= this.t) { r.t = 0; return; }
303 var bs = n%this.DB;
304 var cbs = this.DB-bs;
305 var bm = (1<<bs)-1;
306 r[0] = this[ds]>>bs;
307 for(var i = ds+1; i < this.t; ++i) {
308 r[i-ds-1] |= (this[i]&bm)<<cbs;
309 r[i-ds] = this[i]>>bs;
310 }
311 if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
312 r.t = this.t-ds;
313 r.clamp();
314 }
315
316 // (protected) r = this - a
317 function bnpSubTo(a,r) {
318 var i = 0, c = 0, m = Math.min(a.t,this.t);
319 while(i < m) {
320 c += this[i]-a[i];
321 r[i++] = c&this.DM;
322 c >>= this.DB;
323 }
324 if(a.t < this.t) {
325 c -= a.s;
326 while(i < this.t) {
327 c += this[i];
328 r[i++] = c&this.DM;
329 c >>= this.DB;
330 }
331 c += this.s;
332 }
333 else {
334 c += this.s;
335 while(i < a.t) {
336 c -= a[i];
337 r[i++] = c&this.DM;
338 c >>= this.DB;
339 }
340 c -= a.s;
341 }
342 r.s = (c<0)?-1:0;
343 if(c < -1) r[i++] = this.DV+c;
344 else if(c > 0) r[i++] = c;
345 r.t = i;
346 r.clamp();
347 }
348
349 // (protected) r = this * a, r != this,a (HAC 14.12)
350 // "this" should be the larger one if appropriate.
351 function bnpMultiplyTo(a,r) {
352 var x = this.abs(), y = a.abs();
353 var i = x.t;
354 r.t = i+y.t;
355 while(--i >= 0) r[i] = 0;
356 for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
357 r.s = 0;
358 r.clamp();
359 if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
360 }
361
362 // (protected) r = this^2, r != this (HAC 14.16)
363 function bnpSquareTo(r) {
364 var x = this.abs();
365 var i = r.t = 2*x.t;
366 while(--i >= 0) r[i] = 0;
367 for(i = 0; i < x.t-1; ++i) {
368 var c = x.am(i,x[i],r,2*i,0,1);
369 if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
370 r[i+x.t] -= x.DV;
371 r[i+x.t+1] = 1;
372 }
373 }
374 if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
375 r.s = 0;
376 r.clamp();
377 }
378
379 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
380 // r != q, this != m. q or r may be null.
381 function bnpDivRemTo(m,q,r) {
382 var pm = m.abs();
383 if(pm.t <= 0) return;
384 var pt = this.abs();
385 if(pt.t < pm.t) {
386 if(q != null) q.fromInt(0);
387 if(r != null) this.copyTo(r);
388 return;
389 }
390 if(r == null) r = nbi();
391 var y = nbi(), ts = this.s, ms = m.s;
392 var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
393 if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
394 else { pm.copyTo(y); pt.copyTo(r); }
395 var ys = y.t;
396 var y0 = y[ys-1];
397 if(y0 == 0) return;
398 var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
399 var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
400 var i = r.t, j = i-ys, t = (q==null)?nbi():q;
401 y.dlShiftTo(j,t);
402 if(r.compareTo(t) >= 0) {
403 r[r.t++] = 1;
404 r.subTo(t,r);
405 }
406 BigInteger.ONE.dlShiftTo(ys,t);
407 t.subTo(y,y); // "negative" y so we can replace sub with am later
408 while(y.t < ys) y[y.t++] = 0;
409 while(--j >= 0) {
410 // Estimate quotient digit
411 var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
412 if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
413 y.dlShiftTo(j,t);
414 r.subTo(t,r);
415 while(r[i] < --qd) r.subTo(t,r);
416 }
417 }
418 if(q != null) {
419 r.drShiftTo(ys,q);
420 if(ts != ms) BigInteger.ZERO.subTo(q,q);
421 }
422 r.t = ys;
423 r.clamp();
424 if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
425 if(ts < 0) BigInteger.ZERO.subTo(r,r);
426 }
427
428 // (public) this mod a
429 function bnMod(a) {
430 var r = nbi();
431 this.abs().divRemTo(a,null,r);
432 if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
433 return r;
434 }
435
436 // Modular reduction using "classic" algorithm
437 function Classic(m) { this.m = m; }
438 function cConvert(x) {
439 if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
440 else return x;
441 }
442 function cRevert(x) { return x; }
443 function cReduce(x) { x.divRemTo(this.m,null,x); }
444 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
445 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
446
447 Classic.prototype.convert = cConvert;
448 Classic.prototype.revert = cRevert;
449 Classic.prototype.reduce = cReduce;
450 Classic.prototype.mulTo = cMulTo;
451 Classic.prototype.sqrTo = cSqrTo;
452
453 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
454 // justification:
455 // xy == 1 (mod m)
456 // xy = 1+km
457 // xy(2-xy) = (1+km)(1-km)
458 // x[y(2-xy)] = 1-k^2m^2
459 // x[y(2-xy)] == 1 (mod m^2)
460 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
461 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
462 // JS multiply "overflows" differently from C/C++, so care is needed here.
463 function bnpInvDigit() {
464 if(this.t < 1) return 0;
465 var x = this[0];
466 if((x&1) == 0) return 0;
467 var y = x&3; // y == 1/x mod 2^2
468 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
469 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
470 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
471 // last step - calculate inverse mod DV directly;
472 // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
473 y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
474 // we really want the negative inverse, and -DV < y < DV
475 return (y>0)?this.DV-y:-y;
476 }
477
478 // Montgomery reduction
479 function Montgomery(m) {
480 this.m = m;
481 this.mp = m.invDigit();
482 this.mpl = this.mp&0x7fff;
483 this.mph = this.mp>>15;
484 this.um = (1<<(m.DB-15))-1;
485 this.mt2 = 2*m.t;
486 }
487
488 // xR mod m
489 function montConvert(x) {
490 var r = nbi();
491 x.abs().dlShiftTo(this.m.t,r);
492 r.divRemTo(this.m,null,r);
493 if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
494 return r;
495 }
496
497 // x/R mod m
498 function montRevert(x) {
499 var r = nbi();
500 x.copyTo(r);
501 this.reduce(r);
502 return r;
503 }
504
505 // x = x/R mod m (HAC 14.32)
506 function montReduce(x) {
507 while(x.t <= this.mt2) // pad x so am has enough room later
508 x[x.t++] = 0;
509 for(var i = 0; i < this.m.t; ++i) {
510 // faster way of calculating u0 = x[i]*mp mod DV
511 var j = x[i]&0x7fff;
512 var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
513 // use am to combine the multiply-shift-add into one call
514 j = i+this.m.t;
515 x[j] += this.m.am(0,u0,x,i,0,this.m.t);
516 // propagate carry
517 while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
518 }
519 x.clamp();
520 x.drShiftTo(this.m.t,x);
521 if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
522 }
523
524 // r = "x^2/R mod m"; x != r
525 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
526
527 // r = "xy/R mod m"; x,y != r
528 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
529
530 Montgomery.prototype.convert = montConvert;
531 Montgomery.prototype.revert = montRevert;
532 Montgomery.prototype.reduce = montReduce;
533 Montgomery.prototype.mulTo = montMulTo;
534 Montgomery.prototype.sqrTo = montSqrTo;
535
536 // (protected) true iff this is even
537 function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
538
539 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
540 function bnpExp(e,z) {
541 if(e > 0xffffffff || e < 1) return BigInteger.ONE;
542 var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
543 g.copyTo(r);
544 while(--i >= 0) {
545 z.sqrTo(r,r2);
546 if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
547 else { var t = r; r = r2; r2 = t; }
548 }
549 return z.revert(r);
550 }
551
552 // (public) this^e % m, 0 <= e < 2^32
553 function bnModPowInt(e,m) {
554 var z;
555 if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
556 return this.exp(e,z);
557 }
558
559 // protected
560 BigInteger.prototype.copyTo = bnpCopyTo;
561 BigInteger.prototype.fromInt = bnpFromInt;
562 BigInteger.prototype.fromString = bnpFromString;
563 BigInteger.prototype.clamp = bnpClamp;
564 BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
565 BigInteger.prototype.drShiftTo = bnpDRShiftTo;
566 BigInteger.prototype.lShiftTo = bnpLShiftTo;
567 BigInteger.prototype.rShiftTo = bnpRShiftTo;
568 BigInteger.prototype.subTo = bnpSubTo;
569 BigInteger.prototype.multiplyTo = bnpMultiplyTo;
570 BigInteger.prototype.squareTo = bnpSquareTo;
571 BigInteger.prototype.divRemTo = bnpDivRemTo;
572 BigInteger.prototype.invDigit = bnpInvDigit;
573 BigInteger.prototype.isEven = bnpIsEven;
574 BigInteger.prototype.exp = bnpExp;
575
576 // public
577 BigInteger.prototype.toString = bnToString;
578 BigInteger.prototype.negate = bnNegate;
579 BigInteger.prototype.abs = bnAbs;
580 BigInteger.prototype.compareTo = bnCompareTo;
581 BigInteger.prototype.bitLength = bnBitLength;
582 BigInteger.prototype.mod = bnMod;
583 BigInteger.prototype.modPowInt = bnModPowInt;
584
585 // "constants"
586 BigInteger.ZERO = nbv(0);
587 BigInteger.ONE = nbv(1);
OLDNEW
« no previous file with comments | « dependencies ('k') | lib/rsa.js » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld